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Abstract

Microstructural morphology and grain boundary properties often control the
service properties of engineered materials.  This report uses the Potts-model to simulate
the development of microstructures in realistic materials. Three areas of microstructural
morphology simulations were studied.  They include the development of massively
parallel algorithms for Potts-model grain grow simulations, modeling of mass transport
via diffusion in these simulated microstructures, and the development of a gradient-
dependent  Hamiltonian to simulate columnar grain growth.

Potts grain growth models for massively parallel supercomputers were developed
for the conventional (non-accelerated) Potts-model in both two and three dimensions.
Simulations using these parallel codes showed self similar grain growth and no finite size
effects for previously unapproachable large scale problems.  In addition, new
enhancements to the conventional Metropolis algorithm used in the Potts-model were
developed to accelerate the calculations.  These techniques enable both the sequential and
parallel algorithms to run faster and use essentially an "infinite" number of grain
orientation values to avoid  non-physical grain coalescence events.

Mass transport phenomena in polycrystalline materials were studied in two
dimensions using numerical diffusion techniques on microstructures generated using the
Potts-model. The results of the mass transport modeling showed excellent quantitative
agreement with one dimensional diffusion problems, however the results also suggest that
transient multi-dimension diffusion effects cannot be parameterized as the product of the
grain boundary diffusion coefficient and the grain boundary width.  Instead, both
properties are required.

Gradient-dependent grain growth mechanisms were included in the Potts-model
by adding an extra term to the Hamiltonian (total internal energy).  Under normal grain
growth, the primary driving term is the curvature of the grain boundary, which is included
in the standard Potts-model Hamiltonian. To investigate columnar grain growth, a
gradient-dependent term was added.  This approach was taken because it fit easily into
the mobility model in which the velocity of the grain boundary is proportional to its
mobility times the driving forces.  Results of these simulations produced the expected
columnar grain structures in regions of high mobility and large temperature gradients.
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1. INTRODUCTION

Microstructural morphology and grain boundary properties often control the in-
service properties of engineered materials  making it essential to understand the
development of microstructures in realistic materials.  This report used the Monte Carlo
Potts-model simulation technique to study grain growth and recrystallization phenomena.
The Potts-model simulations were extended to include not only the traditional effects of
crystal orientation and grain growth, but also to include new physics effects such as
mobility and temperature gradients.  In addition, because the protective ability of coatings
is strongly controlled by the diffusion of corrosive species through the coating
microstructure, the microstructures generated by the Potts-model simulations were used
to simulate grain boundary and bulk diffusion of species through these realistic
microstructures. Finally, massively parallel algorithms for the Potts-model simulations
were developed to provide the capability of performing large scale simulations for
macro-sized “real world” problems.

This report first briefly introduces Potts-model in section 2, and follows this
introduction in the next three sections with the development of massively parallel
algorithms (section 3), mass transport through realistic microstructures (section 4), and
the extension of the Potts-model to include temperature gradient effects (section 5).  A
brief summary of the results obtained in these sections is described below.

1.1. Summary of Massively Parallel Potts-models

A number of Potts grain growth models for massively parallel supercomputers
were developed and tested.  The parallel algorithms were first developed for the
conventional (non-accelerated) Potts-model in both two and three dimensions.  The
parallel algorithms first developed a lattice coloring scheme to insure that the Monte
Carlo energy update rules were correctly followed when multiple processors were
simultaneously updating the grain growth.  In addition robust parallel random number
generators were also developed to insure that the code grows grains that are statistically
"identical", independent of the number of processors used, and independent of the initial
random number seeds.  These newly developed parallel codes were used on Sandia's
1840-processor Intel Paragon to perform large-scale Potts simulations on lattice sizes up
to 4000x4000 in 2-D and 300x300x300 in 3-D, each with 100,000 or more lattice sweeps.
These simulations were performed to evaluate self similarity of the grain growth and to
explore finite size effects for previously unapproachable large scale problems.  To our
knowledge these are the largest Potts-model simulations performed to date.  The results
are described in Section 3.2.

In addition to conventional Potts simulation methods, several new enhancements
to the conventional Metropolis algorithm used in the Potts-model simulations were
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developed.  These techniques enable both the sequential and parallel algorithms to run
faster and to use essentially "infinite" numbers of spin values (grain orientations), so that
coalescence events (when two different grains with the same spin value artificially
coalesce) do not occur.  These new algorithms are described in Section 3.3.

1.2. Summary of Mass Transport Phenomena in
Polycrystalline Materials

Engineering materials exposed to aggressive environments often use coatings for
their protective ability.  Because the protective ability is strongly controlled by the
diffusion of corrosive species through the coating microstructure, the microstructures
generated by Potts-model simulations were used to simulate grain boundary and bulk
diffusion of species through realistic two-dimensional microstructures. These simulated
mass transport phenomena in polycrystalline materials are described in section 4.

Traditionally, such mass transport properties have been studied by examining
model or idealized polycrystalline structures, such as a regular array of straight grain
boundaries.  However, these models do not account for a number of features of real grain
ensembles, including the grain size distribution and the topological aspects of grain
boundaries.  In this study, numerical diffusion simulation techniques were developed to
research transient and steady-state mass transport through realistic two-dimensional
polycrystalline microstructures.  In all cases the microstructures were generated using a
single processor Potts-model N-Fold Way code.  The effects of microstructural
parameters such as average grain size and grain boundary topology were examined, as
were the limitations of the model.

The results of the mass transport modeling showed excellent quantitative
agreement with one-dimensional diffusion problems; however, the results also suggest
that multi-dimensional diffusion and transient properties are more complicated than
indicated by simplistic mixing rules.  Specifically, transient grain boundary diffusion
cannot be parameterized as the product of the grain boundary diffusion coefficient and the
grain boundary width. Instead both properties are required.  In general, the conventional
scaling and mixing rules appear to hold; however, the quantitative results look as though
they are dependent on geometric factors such as bottle-necks and tortuousity.

1.3. Summary of Gradient Dependent Potts-model
Simulations

Large temperature gradients in ceramic materials at elevated service temperatures
often lead to the development of columnar grains.  This phenomenon occurs in nuclear
reactor fuel pins. To investigate columnar grain growth caused by temperature gradients,
a gradient-dependent term was added to the Potts-model Hamiltonian.  This approach (of
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modifying the Hamiltonian) was used because it fits easily into the mobility model for
grain growth in which the velocity of the grain boundary is proportional to its mobility
times the driving forces.  Under normal grain growth, the governing growth mechanism
is curvature, which is included in the standard Potts-model Hamiltonian.  The additional
driving term (growth mechanism) was added to account for gradient-dependent driving
mechanisms such as vapor-transport across pores and voids (or other gradient dependent
transport phenomena). Other physical transport mechanisms can also be included in this
manner including: surface diffusion, volume diffusion, and migration of pores in stress
gradients.

When a gradient term was added to the Hamiltonian having a one-dimensional
linear mobility gradient, the grain growth turned to columnar growth at the high mobility
(hot) side, equiax in the middle, and little growth at the low mobility (cold) side.
Qualitatively, these changes reproduce the microstructures observed in uranium oxide
fuels which are caused by temperature gradient-dependent vapor transport mechanism
across pores in the ceramic fuel.
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2. POTTS-MODEL

The Potts-model simulation method is described in an number of reports5,22 and
briefly summarized here.  In this type of simulation the microstructure of a material is
mapped onto a 2-dimensional grid or lattice.  At each lattice site an index, Si, is assigned
which corresponds to the orientation of the grain at that site.  This index is called the spin.
Adjacent sites with different spin orientations form interface sites while sites with only
like nearest neighbors are interior sites.  The total system energy of the simulation over all
sites is specified by assigning a positive energy to interface sites and zero energy to
interior sites.  It is computed via the Hamiltonian

H J S S
j

z

i

N

i j= −
==

∑∑2 1
11

( ( , ))δ
( 2-1)

where the outer sum (i) is overall all sites in the system, and the inner sum (j) is only over
the z nearest neighbors.  (In a square lattice, there are eight nearest neighbors because the
diagonal neighboring sites are included.) The Kronecker delta function is defined as
δ(Si,Sj) = 1 if Si = Sj, and 0 otherwise.  Typically in the  simulations described in this
report S=100, thus allowing 100 different types of grains.  J is a constant used to scale the
grain boundary energy.  In essence the system energy is J times the number of interface
boundary segments in the system.

Grain growth kinetics are determined by Monte Carlo selection of the site and
then deciding whether or not to change the spin at this site based on the total system
energy change.  This is accomplished first by randomly selecting a lattice site i, and a new
site spin Sj different from the original spin Si.  The spin index of site i is then changed to
the new index (Sj) with probability given by

P E
if E

M if Ei
i
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∆
∆

=
>
≤









0 0

0
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where Mi is a scaling function dependent on the mobility of site i, and ∆E is the energy
change for assigning site i the new spin index Sj.   ∆E  is calculated by calculating the
difference in like-spin neighbors around site i when it has the old spin and the new spin.
When the number of nearest neighbors has more like spins with the newly selected spin
Sj, then ∆E is negative, resulting in a lower value for the Potts-model Hamiltonian. ∆E is
just the change in the Hamiltonian due to change in spin of a single site i.

Time is incremented by 1/N after each attempted spin flip.  N is the total number
of lattice sites in the system.  Therefore, each Monte Carlo time step requires N attempted
spin flips.
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Note that the mobility function, 0 < Mi ≤ 1, scales the acceptance rate of the
energetically favorable changes.  Thus when the mobility function is high the likelihood
of changing the spin to one of the neighbors is high and thus the grains grow more
quickly when Mi is close to 1.  Similarly, the growth rate is slow when Mi is small.  Thus,
the magnitude of the simulation mobility function Mi is not equal to a physical mobility;
rather it represents a ratio of the physical mobility at the fastest and slowest locations
within the simulation.

To illustrate the types of grains that are grown by the Potts model simulation, the
results of a simple example are depicted in Figure 1.  In this example the mobility term Mi

was set to 1.0, and the two-dimensional field upon which grains were grown had a
dimension of 200 x 200 lattice sites. Figure 1a shows the grain structure at early times
(5,000 Monte Carlo time steps) where the grains had an average radius of 8.4 pixels.
Similarly Figure 1b shows the grain structure later in time (at 50,000 Monte Carlo time
steps.) after substantial grain growth occurred.  It had an average grain radius of 26.1
pixels.

A.  (Early time) B. (Late time)
Figure 1:  Example of grain growth at two different times in a 200 x 200 lattice with Mobility
Ratio M =1.  Figure A is at an early time of 5,000 Monte Carlo time steps, and figure B is at
50,000 time steps.  The average grain radii are  8.4 and 26.1 pixels respectively.
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3. PARALLEL POTTS-MODEL SIMULATIONS

This section describes the implementation of the Potts grain growth model on
massively parallel supercomputers.  First, the basic parallel algorithm was developed for
the 2-D and 3-D conventional Potts-model.  This involves use of (1) a lattice coloring
scheme to insure that the Monte Carlo energy update rules are followed and (2) robust
parallel random number generators to insure that the code grows grains in a statistically
"identical" way, independent of the number of processors used, and independent on the
initial random number seeds.  The new parallel codes on Sandia’s 1840-procesor Intel
Paragon were used to perform large-scale Potts simulations on lattice sizes up to
4000x4000 in 2-D and 300x300x300 in 3-D, each with 100,000 or more lattice sweeps.
These are the largest Potts-model simulations performed to date.  The results are
described in Section 3.2.  New enhancements were developed for the conventional
Metropolis algorithm used in the Potts-model simulations.  These techniques enable both
the sequential and parallel algorithms to run faster and use essentially “infinite" spin
values so that grain coalescence events (where 2 different grains with the same spin value
grow together) do not occur.  These new algorithms are described in Section 3.3.

3.1. Conventional Algorithm in Parallel

The conventional sequential Potts-model on a periodic lattice of N sites is
summarized in the previous section and may be described in the following way 5,22.  First
the lattice sites are initialized with random spin values from 1 to S.  Then the following
loop is executed N times:

1.   Pick a lattice site randomly.
2.   Pick a new spin value (from 1 to S) randomly.
3.   Compute the energy change ∆E for the site to change to the new spin based on
      the number of unlike nearest neighbors.
4.   Accept or reject the change based on the “zero temperature” Boltzmann

     criterion describe in equation 
P E

if E

M if Ei
i

( )∆
∆
∆

=
>
≤









0 0

0

( 2-2).

N iterations of this loop constitute one "sweep" of the lattice which represents a
unit of Monte Carlo "time".  As sweep after sweep is performed spins preferentially flip
to the same values as their neighbors to lower the system energy and individual "grains"
(represented as geometric regions of the same spin) increase in size. A large workstation-
class simulation to grow grains to a reasonable size might perform 100,000 sweeps on a
2-D lattice of size 200x200.  On a large parallel machine we still want to perform 100,000
sweeps, but of much larger lattices.  The most time-consuming step in the algorithm is
step (3) which involves comparing the spin values of all neighboring lattice sites to the
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old and new spin value to include their contribution to the energy change.  In the Potts-
model, "corner" neighbors are included in this operation, so the number of neighbors in a
square lattice is 8 in 2-D and 26 in 3-D.

As stated above, the Potts algorithm does not readily parallelize in the obvious
way of assigning each of P processors a subset of the loop iterations.  This is because if
step (1) is executed simultaneously on multiple processors, then two (or more) processors
may pick adjacent (or the same) lattice sites.  If this occurs, then when the two processors
execute step (3), they will each attempt to flip the spin of their lattice site using incorrect
information about neighboring spins (each other).  This would violate the Monte Carlo
rule of "detailed balance" which demands that two (or more) sites not be flipped
simultaneously, if they interact with each other via their respective Hamiltonians.

An alternative route to parallelism which overcomes this difficulty is to partition
the overall lattice so that each processor is assigned a contiguous sub-domain.  In two
dimensions this is a small rectangular section within the lattice, and in three dimensions it
is a rectangular box.  Each processor also stores a copy of the narrow strips (or planes in
three dimensions) of lattice sites that immediately adjoin its sub-domain and which are
actually owned by neighboring processors.  This allows a processor to check neighboring
spin values of sites on the edge of its sub-domain.

With these data structures, every processor can now simultaneously flip spins in
its sub-domain without violating the rule of detailed balance, so long as one processor
does not choose a lattice site on an edge of its sub-domain at the same time the processor
adjoining that edge does likewise.  We enforce this restriction in our parallel Potts
algorithm by "checkerboarding" the lattice as shown in Figure 1.  A lattice site is
represented by a square (not the corners of the square) and assigned a "color" (or
shading).  For a 2-D lattice it is sufficient to checkerboard the lattice with 4 colors as in
Figure 2a.

Figure 2.  Checkerboard lattice used for parallel Potts grain growth algorithm.
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This template is used to tile the entire lattice as in Figure 1b, where only the lattice
sites assigned to color 0 are now shown as shaded.  The key point is that the 8 neighbors
of a color-0 lattice site do not include any other color-0 lattice sites.  The parallel Potts
grain growth algorithm for one sweep can now be written as follows:

Loop over colors (i )

(1) Loop over all lattice sites of color i within my sub-domain

(1a) Pick a new spin value (from 1 to S) randomly.

(1b) Compute the energy change for the site to change to the new spin.

(1c) Accept or reject the change based on the Boltzmann criterion.

(*) End lattice site loop

(2)  Exchange sites along edge of my sub-domain with
      neighboring processors to acquire current neighbor spin values.

(*) End color loop

This algorithm works for both 2-D and 3-D lattices.  In 3-D 8 colors are used to
uniquely tile the lattice with a 2x2x2 template that insures none of the 26 neighbors of a
lattice site have the same color as the center site.  Also, the communication of sub-
domain "edges" becomes "planes" in 3-D.  Note that steps (1a)-(1c) are the same as steps
(2)-(4) in the sequential algorithm, but they now are restricted to operating within a
processors sub-domain.

This algorithm is highly parallel, with the only communication cost being the
local exchanges of boundary spins (step 2) between neighboring processors.  These
exchanges also serve as synchronization points in the loop over colors to insure that all
processors work on the same color at the same time.  In practice, so long as the processor
sub-domains were of reasonable size (50x50 or larger in 2-D), the communication costs
were only a few percent of the total run time and thus the algorithm can simulate large
lattices with parallel efficiencies of over 90% on large numbers of processors.

The parallel algorithm sequences through lattice sites differently than the
sequential algorithm in two respects.  First the parallel algorithm does not pick sites
randomly, even within a processor’s sub-domain.  Second, the coloring scheme partitions
the original lattice into colored sub-lattices which are updated one at a time. Some
sequential implementation of Potts-models also alter the site selection sequence similar to
the way our parallel algorithm does, without apparent ill effect.  On vector
supercomputers this is done to increase the vectorizability of the code.  The most
important criterion for this study was that our parallel algorithm not alter the grain growth
statistics.  Various tests were performed of this criterion; one example is shown in



16

Figure 3 where the average grain area and radius is plotted against time (Monte Carlo
sweeps) for a simulation of a 200x200 lattice.  The open squares and circles are results
from a parallel simulation; the solid and dashed lines are from a sequential simulation.
The excellent agreement between the two simulations indicates that the parallel algorithm
reproduces the correct sequential Monte Carlo statistics.
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Figure 3.  Comparison of parallel grain growth algorithm versus sequential algorithm for a
200x200 lattice out to 105 Monte Carlo time steps.  The Open symbols are from the parallel
algorithm.  The lines are from the sequential simulation.

The parallel Potts algorithm uses random numbers to pick new spin values and, in
non-zero temperature simulations, in deciding whether to accept uphill energy changes.
Two different parallel random number generation (pRNG) schemes were implemented in
our codes and verified that they produced independent (uncorrelated) random number
streams that generated correct grain growth statistics.  In practice one pRNG was used to
initialize the lattice of spins and another to perform the Monte Carlo updates.  The first
pRNG is known as RANECU1 and combines two linear congruential generators to create
a stream with a period of 1018.  The second pRNG is based on a serial RNG due to
Marsaglia2 and is a lagged Fibonacci generator that can produce 900,000,000 independent
streams each of length 1030.  On the parallel machine each processor produced random
numbers from a different stream.
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3.2. Large-Scale Parallel Potts-model Simulations

The parallel classical Potts algorithm runs at a speed of approximately 10
microseconds/site/sweep/processor for 2-D lattices on the i860 processors of Sandia’s
Intel Paragon.  It is about 2-3x slower for 3-D lattices due to the increased number of
neighbors that must be checked.  This means that simulating lattices with millions of sites
for 100,000 sweeps requires hours of CPU time even on thousands of processors.

Large-scale simulations were performed to study two phenomena that were
previously computationally inaccessible.  The first of these is finite-size effects on
periodic lattices, to see if measurably different grain growth statistics could be observed
when simulating larger and larger systems.  The second was to test the theory of scaling
self-similarity in the grain growth statistics.  This theory states that grains should grow
identically independent of their size (at least for sizes larger than a few pixels in area).  In
other words, a 2-D lattice with grains of average size 100 pixels should exhibit growth
statistics the same as one with grains of size 400 pixels that was shrunk by a factor of 2 in
each dimension.  The goal in these large simulations was to test for finite size effects and
self-similarity across a larger range of grain and lattice sizes than was previously possible.

The 2-D results for periodic lattice sizes ranging from 100x100 to 4000x4000 are
shown in Figure 3 where the grain area is plotted vs. time, with the curves for each lattice
size vertically offset from each other so as not to overlap.  The area is defined as the
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Figure 4.  Two dimensional parallel algorithm grain grow study to examine self
similarity and finite size effects for lattice sizes from 100x100 to 4000x4000.  Grain
areas are vertically offset and show statistically identical growth behavior independent
of the  lattice size.
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number of pixels per grain averaged over the entire lattice.  To within statistical error
these curves overlay each other "exactly"; no finite-size effects are observed.  Similarly,
the 3-D results for lattice sizes ranging from 30x30x30 to 300x300x300 are given in
Figure 4.  Again there is no evidence of finite-size effects, other than the statistical noise
on the right side of the graphs for the smaller lattices, where the grains have grown to
such a size that few of them are left.

For completeness the second, third and four moments of the grain areas for the 2-
D large scale Potts simulation were calculated and are shown in Figure 6.  These results
are discussed further in Plimpton3.

Figure 5.  Three dimensional parallel Potts algorithm to study self similarity and finite
size effects for varying lattice sizes.  The three dimensional lattices vary from 30x30x30
lattice sites to 300x300x300.  Grain areas are vertically offset for each lattice size.
Statistical deviations occur for the smaller lattices because only a few grains remain after
many time sweeps.



19

0

1

2

3

4

5

6

m
om

en
t,

 
µ

7

100 1000
t (MCS)

104 105 106

variance, µ2
skewness, µ3
kurtosis, µ4

Figure 6.  Second, third, and fourth order moments of the 2-D large lattice size grain growth
simulations.

Performing these large simulations proved not only a computational challenge but
also a data management challenge.  A typical 100,000 sweep run requires dozens of
lattice snapshots be saved for post-processing analysis.  For a 16 million site lattice, each
snapshot may be 16-64 Mbytes in size, depending on the precision (1 to 4 bytes) needed
to store a single spin.  Thus one run can generate up to a Gigabyte or more of data.

As part of the LDRD effort, several parallel and serial analysis tools were created
to calculate appropriate statistics from these snapshot files.  Some of the tools reorder the
jumbled data as output in chunks by multiple processors into the parallel output files so
that a serial processing code can interpret the files correctly.  For the cases where
"infinite" spin values were simulated (see the next section), a parallel on-the-fly analysis
routine to identify individual grains within the global lattice and compute averaged
statistics (radius, area, etc) across the entire lattice were developed.  In this setting, no
snapshot files need be saved since the grain statistics are computed in memory and the
analysis itself can be done much more quickly using the full power of the parallel
machine.
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3.3. New Algorithms

3.3.1.   Drawbacks of Conventional and "N-Fold Way"
Algorithms 

3.3.1.1.    Conventional Algorithm

In the conventional T=0 Metropolis or Potts algorithm, as noted in the previous
section, the simulation is begun by initializing all the sites with a Potts spin value
randomly selected from the integers 1 through S, where S is the number of different
allowed spins. Then, (1) a site is picked, either randomly for the serial algorithm or in a
checkerboard sequence for the parallel algorithm; (2) a new spin value is randomly
selected from 1 through S; and (3) a change to the new spin value is made if and only if
the change in energy is less than or equal to 0. This procedure is repeated until the desired
number of sweeps through the lattice have been performed. A key point is that for large S,
this procedure is very inefficient, as most of the attempted spin flips will have no chance
of success. For example, consider the local configuration shown in Figure 7. An
attempted flip of the central spin is only possible if one of the four neighboring spin
values 5, 3, 4, or 1 is selected to be the "attempted" new spin. If S=100, for example, such
a selection will occur on average only once every 100/4 = 25 moves.  If S=200, such a
selection will occur on average only once every 200/4 = 50 moves.  Thus, the computer
time necessary for a successful spin flip attempt scales linearly with S for the
conventional algorithm and, for S large, much of the computer time is spent selecting and
testing attempted spin flips which have no chance of success.  In a 2-D or 3-D simulation,
S must typically be set to at least 100-200, so that there is a negligible chance of two
different grains with the same spin becoming adjacent to each other as the simulation
progresses.  When this happens nonphysical coalescence of the grains occurs.

                            5  3  4
                            5  7  1
                            5  7  1

Figure 7.  Local lattice configuration for selection of a spin flip.

Another source of inefficiency in the conventional algorithm is trying to flip spins
which are in grain interiors; i.e., which are in regions of the lattice which all have the
same spin value. An example of such a local configuration is shown in Figure 8.  It is
clear that no spin flip is possible because a positive increase in energy is required.  During
the latter part of the simulation, when such configurations are common, much time can
again be wasted in blindly attempting spin flips which can never occur.
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7  7  7
                            7  7  7
                            7  7  7

Figure 8.  Local lattice spin values for a grain interior.

In the following paragraphs some of these inefficiencies are addressed by an
acceleration technique called the “N-fold way”.

3.3.1.2.   N-Fold Way Algorithm

For each Monte Carlo step of the so-called "N-fold way" algorithm4 5, a site is
selected according to its probability of experiencing a spin flip and a change is then made
at that site. There is a known relationship between the conventional and n-fold way
Monte Carlo times, so that the algorithms give equivalent results. Because a spin flip
actually occurs at each step of the n-fold way simulation, the inefficiencies of the
conventional algorithm mentioned above are largely eliminated.

There are certain disadvantages, however, to the n-fold way algorithm. For large
S, each Monte Carlo step involves either a log(N) or N**0.5 search [see ref. 5], where N
is the total number of lattice sites. In contrast, a conventional algorithm step involves only
local operations with a small number of neighboring lattice sites.  One consequence of
this is that the conventional algorithm is faster than the n-fold way method at the
beginning of the simulation [see ref. 5].  A typical procedure is thus to start the simulation
using the conventional algorithm and then to switch later to the n-fold way.  However, as
mentioned previously, this initial use of the conventional algorithm brings with it a high
computational cost for large S.

Another disadvantage of the N-fold way algorithm is that it is not easily or
efficiently parallelizable. A method of parallelization has been discovered6 though not (to
our knowledge) implemented; however, this method necessitates treating part of the
lattice by the conventional algorithm, which will eventually become a bottleneck as the
simulation progresses.

3.3.2.   Fast Parallel Algorithms

3.3.2.1.   Algorithmic Goal

The spin values 1 through S in the Potts-model correspond to the possible
orientations of growing grains. Since real grains can orient in any direction, one would
ideally like to perform Potts-model simulations with an infinite S. For practical purposes
“infinite” means S=N where N is the total number of lattice sites, so that the simulation
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can initialize every lattice site with a unique spin value from 1 to N.  Finite values of S <
N can lead to unphysical grain "coalescence", where two grains with the same spin value
start to grow independently in different parts of the lattice, meet, and then merge
(coalesce) unphysically. This coalescence can give rise to spurious fluctuations in the
grain growth statistics.

One would also like an algorithm which is simply and efficiently parallelizable, to
take advantage of the increased computing power now offered by massively parallel
machines. Hence, our goal is the development of an algorithm which is fast and
efficiently parallelizable, and which can explicitly handle the case of infinite Q7.

3.3.2.2.   Masking

As mentioned in the previous section, one inefficiency of the conventional
algorithm is the amount of time spent attempting to flip spins in the interior of grains,
attempts which have no chance of success. To remove this inefficiency, we assign a
MASK variable to each lattice site, where MASK=0 if the site is in a grain interior and
MASK=1 otherwise8 [ref 8].  Specifically, in the case of two dimensions, MASK is set to
0 if the spin value at a given site is the same as that of 5 or more of its 8 neighbors, and 1
otherwise. The MASK values are updated if the local environment of a site changes. Each
time a site is visited, its MASK value is checked. If MASK=0, then no attempt is made to
flip the spin and one proceeds to the next site. We have found that this implementation of
"masking" leads to a speed-up of about three even for tests on small (100x100) lattices.
The speed-up is greater as the simulation progresses and individual grains grow larger.

3.3.2.3.   "Wild" moves

In the conventional Potts Monte Carlo algorithm, a spin which is different from
any of its neighbors is allowed to flip to another spin value which is also different from
any of its neighbors, since the energy change is 0. We call such flips "wild" moves5, and
such spins "wild" spins; an example is given in Figure 9. Such wild moves are common
during the early part of the simulation.

                  7  3  1                     7  3  1
                 7  2  1        ---->      7  5  1
                 6  4  1                     6  4  1

Figure 9.  Example of “wild” spin  move, where central spin (2) changed to (5) with no energy
change.

Since there is no reason why one value of a "wild" spin should be preferred on
average over another, we conjecture that eliminating wild moves should lead on average
to the same Monte Carlo kinetics as retaining such moves. To test this conjecture, we ran
the conventional algorithm as before, allowing wild moves to be selected and attempted,
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but always rejected such moves. As shown in Figure 10 for S=100 on a 1000x1000
lattice, this elimination of wild moves appears to have no effect.  We combine the
elimination of wild moves with the approximation of the next section.
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Figure 10.  Parallel Potts simulation with and without allowing “wild” spin moves.

3.3.2.4.   Fixed Neighbor Approximation

If we eliminate "wild" moves, then spins can only flip to one of their neighboring
spin values. The probability of randomly selecting one of these neighboring values in a
spin flip attempt is less than or equal to z/S, where "z" is the number of neighboring sites.
For large S then, as noted previously, the probability of selecting an attempted new spin
with non-zero chance of flipping is bounded by z/S, and the conventional algorithm
simulation time hence scales linearly with S. As one way to eliminate these useless spin
flip attempts, we utilize the "fixed neighbor approximation" (FNA).  Given a so called
“speed-up factor” FS, this approximation is equivalent to attempting FS spin flips every
time a site is visited rather than attempting just one flip as in the conventional algorithm,
with the neighboring spins held fixed during the FS attempts.  This leads to a speed-up of
order FS over the conventional algorithm; i.e., one sweep through the lattice using the
FNA approximation corresponds to FS sweeps with the conventional algorithm.  We
typically choose FS to be of order S/z, so that the probability of one successful spin flip is
of order 1. If desired, we can then extrapolate in FS to the FS=1 limit, since the FNA
algorithm with FS=1 is identical to the conventional algorithm.

The FNA approximation is implemented as follows. When a site is visited, we
first calculate the number L of different neighboring spin values.  For example, L=5 for
the central spin in Figure 7 and L=1 for the central spin in Figure 8. We then compute the
probability P_S(m) of successfully selecting any of those L values m times in FS
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conventional spin flip attempts. Using standard probability arguments, P_S(m) is given
by:

  P_S(m) = { FS! / [ m! (FS-m)! ] }  (L/Q)**m  { 1 - (L/Q) }**(FS-m). We then
define the quantity

  R_S(m) = sum_(m’ = 0, m) P_S(m’), the probability of selecting one of the L
neighboring spin values m or less times in FS attempts.

As a check,

  R_S(FS) = sum_(m’ = 0, FS) P_S(m’) = 1,

since the P_S(m)’s are just the terms in the binomial expansion of { [ 1 - (L/Q) ] +
(L/Q) }**S = 1. Thus, the probability of making any type of change (including *no*
change) is properly normalized to 1.

We then generate a random number R, with (0 < R ≥ 1). If [R_S(m) < R ≤
R_S(m+1)] (with R_S(-1) set to 0), then, m times, we randomly pick one of the
neighboring spin values and attempt a flip. We then proceed to the next site and repeat.
Because neighboring spins are held fixed during this process rather than allowed to
evolve, the FNA algorithm will underestimate grain growth.

We have so far implemented a simplified version of this algorithm. The
simplification is that we do not attempt a spin flip if [0 < R ≤ R_S(0) ] and make only one
attempt if [ R_S(0) < R ≤ 1 ]. This limitation on the number of spin flip attempts will
further slow grain growth. We compare with results obtained from the conventional
algorithm in Figure 11, for a 1000x1000 system with S=200 and FS=25. As predicted, the
RNA algorithm underestimates the grain growth. However, we note particularly good
agreement towards the end of the simulation.  The full implementation of the FNA will be
even more accurate.
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Figure 11.  Comparison of Parallel Potts simulation using the Fixed Neighbor Approximations
(FNA) to the conventional algorithm.

3.3.2.5.   Infinite Q

As noted earlier, in initializing the spins, we can duplicate the effect of infinite S
by simply setting each spin in the lattice equal to a different number9.  In essence, it
suffices that each initial spin be different from all others in the lattice.  For example,
initially each spin can be set to its lattice site number, 1 to N.

When the infinite S limit is taken on a large lattice, the conventional algorithm
becomes even more computationally intensive because it picks up an additional power of
N in computation time, as there are of order S/z = N/z unsuccessful spin flip attempts for
each successful attempt.  Thus, in this limit, it is most convenient to express the speed-up
FS in the form FS = r(S/z). This "rescaling" of FS  has no fundamental significance, as
Monte Carlo time is already only related to experimental time by some multiplicative
factor.

In the infinite Q limit, the P_s(m)’s of the previous section now become   P_r(m) =
{ 1/m! }  (r*L/z)**m  exp[ - (r*L/z) ].  The simplification of not more than one spin flip
per step described above for finite Q is trivially extendible to the infinite Q case.  Thus
we have achieved our goal of a fast readily parallel algorithm which can explicitly handle
infinite S, so as to avoid any possible grain coalescence events.
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3.3.2.6.   Timing

The FNA algorithm and masking can be used together, with the total speed-up
when compared to the conventional algorithm combining multiplicatively.  As mentioned
previously, masking led to a speed-up of about 3 in test runs of small systems and, with Q
= 100 and FS = 12.5, the simplified FNA speed-up in computation time was about 5.
Thus, the total speed-up was about 15.  This is comparable to speed-ups on serial
machines using the combined conventional-(n-fold way) algorithm for similar test
systems.  However, the FNA-masking algorithm is as simply and efficiently parallelizable
as the conventional algorithm, in contrast to the n-fold way algorithm. Further, the FNA-
masking algorithm can directly simulate infinite S, which is not possible with the
combined conventional-(N-fold way) method.  Thus, the FNA-masking algorithm has
certain clear advantages over other existing methods with the caveat that FNA produces
results that appear to underestimate grain growth by a small amount, particularly at early
times in the simulations.
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4. MASS TRANSPORT IN POLYCRYSTALLINE MATERIALS

Engineering materials exposed to aggressive environments often use coatings for
their protective ability.  Because the protective ability is strongly controlled by the
diffusion of corrosive species through the coating microstructure, mass transport
properties in polycrystalline materials were studied by simulating grain boundary and
bulk diffusion of species through realistic two-dimensional microstructures.  The
microstructures were generated by Potts-model simulations.  Traditionally, such
properties have been studied by examining model polycrystalline structures, such as a
regular array of straight grain boundaries.  However, these models do not account for a
number of features of realistic grain ensembles, including the grain size distribution and
the topological aspects of grain boundaries.  In this study, numerical diffusion simulation
techniques were developed to study transient and steady-state mass transport through
realistic two dimensional polycrystalline microstructures.  The effects of microstructural
parameters such as average grain size and grain boundary topology were examined, as
were limitations of the model.

4.1. Introduction

Models that describe materials properties often over-simplify the effects of
polycrystallinity because of the intractability of more precise methods.  Models of grain
boundary diffusion in polycrystalline single phase materials are a good example.
Analytic solutions to this problem require two components -- a method for describing
grain shapes and grain size distributions and a solution technique that can operate upon
the microstructural description.  However, both of these components have eluded
modelers since a simple grain boundary diffusion solution was first proposed by J.C.
Fisher in 1951.10  The lack of any significant advancement in modeling grain boundary
diffusion in realistic microstructures and the availability of simulated microstructures for
input into diffusion calculations prompted us to undertake a study of grain boundary
diffusion using our simulated microstructures.

4.2. Background

Grain boundary diffusion coefficients are often six orders of magnitude larger
than bulk diffusivities in polycrystalline materials.  Therefore, although the volume of
grain boundaries is a small fraction of the total material volume, grain boundary diffusion
often dominates the effective diffusivity of solutes in real materials.  Such accelerated
diffusion affects various applications in different ways.  For example, in protective films
grain boundaries act as fast diffusion pathways through the material to an intolerant
material beneath, shortening the effective life of the film.  In a diffusion barrier,
boundaries may increase the steady state flux of a contaminant through the film, lessening
its overall effectiveness.  In applications in which corrosion properties are composition
dependent, the penetration of species into a specimen along grain boundaries may limit its



28

usable lifetime.  Thus, an understanding of the progression of grain boundary diffusion is
critical to the understanding of the long-term behavior of polycrystalline materials.

We will not go into the specifics of the numerous analytic solutions to grain
boundary diffusion problems here.  For an in-depth description of many of the solutions
to such problems, refer to Kaur and Gust.11  We will, however, provide an overview of
what has been done.

The simplest approximated solution to a steady state grain boundary diffusion
problem is one in which grain boundary diffusion and bulk diffusion are assumed to be
independent of each other.  Here, the overall diffusion coefficient is simply the weighted
average, by cross section, of the two diffusion coefficients.  This implies that there is no
interaction of bulk grain flux and grain boundary flux, and that flux does not converge
upon or diverge from grain boundaries.  These assumptions may be reasonable in certain
ideal cases, such as in microstructures with only longitudinal grain boundaries that only
lie in the direction of the overall diffusion flux.  However, having both transverse and
longitudinal grain boundaries always results in an interaction between grain boundary and
grain flux which leads to significant complications of the problem.

Better solutions to the problems of grain boundary diffusion have been proposed,
but they are still generally limited to simple geometries.  Both Fisher10 and  Whipple12

proposed solutions to the case of penetration of diffusant from a reservoir held at a
constant concentration into a semi-infinite solid with an initial solute concentration of
zero having a single grain boundary perpendicular to a surface.   These solutions
demonstrated that even a seemingly simple diffusion problem involving grain boundaries
leads to a complicated, but still only approximate, solution.  Mishin et al.13 investigated
diffusion in the cases of single grain boundaries at different angles to the surface or grain
boundaries between grains having different bulk diffusion coefficients. The case of
diffusion into a polycrystalline thin film was investigated by Gilmer and Farrell.14,15 All
these solutions still fall short of providing a complete solution to penetration and steady
state diffusion in model microstructures, much less real microstructures, where the
interaction of grain boundaries becomes much more complicated.  Specifically, none of
these models treats the complicated grain morphology encountered in most polycrystals.

The case of grain boundary diffusion in a ’real’ microstructure was investigated by
Levine and MacCallum,16 who proposed a different approach to the problem by solving
the diffusion into a sample via a given volume fraction of high diffusivity boundary
material coupled with diffusion into an average-shape grain.  They found that the
logarithm of the average concentration in a serial sample of a polycrystal varied as depth
to the 6/5 power.  Since all grain boundaries were combined into a single volume fraction
of boundary material, grain boundary connectivity was again ignored.

Purely numerical methods have also been applied to the study of grain boundary
problems.  Levine and Losee17 used a Monte Carlo method to simulate the diffusion of
impurities in grain boundaries.  Their method was unique in that it explicitly allowed for
equilibrium grain boundary segregation of impurity diffusants.  Holloway et al.18 used a
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finite difference method to solve the case of grain boundary diffusion along straight
boundaries in thin films and compared their results to an analytic solution for the same
problem.  Gui et al.19 verified the transmission-line-matrix method for the solution of
model grain boundary diffusion problems for which analytic solutions were available as
well as applyied the technique to other simple geometries.

In summary, a number of analytic and numerical models for grain boundary
diffusion problems have been proposed.10-19  Most of these models use simplifying
assumptions that restrict either the geometry and topology of the system or the time
regime of applicability.  In addition, most models ignore the effect of three-grain
junctions which can act as bottlenecks to diffusive flux.  To overcome these restrictions,
we developed a flexible numerical simulation technique that can be applied to arbitrary
bitmapped microstructures to simulate diffusion over all time regimes.

4.3. Method

The input microstructures for our numerical diffusion simulations are bitmaps
wherein each pixel is assigned a spin index that identifies it as a member of a particular
grain.  The use of the bitmap lattice gives a grid of lines that separate lattice sites.  These
gridlines and their points of intersection represent solute diffusion paths and points of
known solute concentration during the diffusion simulation, respectively.  Each line
segment is assigned a diffusivity corresponding either to that of a grain boundary or that
of the bulk, as shown in

Figure 12. In these simulations, both the bitmap and the diffusion grid are square
lattices, and grain boundaries are assumed to be one unit wide.  The microstructures may
have either periodic or closed boundary conditions at the edges of the lattice.  Finite
sources or sinks are created by setting the initial concentration at points in the diffusion
lattice as desired, or we hold the concentration of these points constant to create infinite
sources or sinks.  The flux out of or into infinite sources or sinks can be measured so that
the steady state flux in various diffusion problems can be determined.

Diffusion along each path in the grid takes place according to a discretized version
of the usual diffusion equation
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where C is the concentration, t is time, x and y are spatial coordinates, and D is the
appropriate diffusion coefficient (bulk or boundary) for the path.  Both finite-element and
finite-difference methods were utilized to solve equation ( 4-1).

The finite difference (FD) method uses the Crank-Nicholson algorithm in 2-D as
implemented by the Alternating Direction Implicit (ADI) method with an adaptive
timestep.  This method gives, in general, good stability and second-order accuracy, so that
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timesteps that are long as compared to those in a purely explicit FD method can be
utilized.  Still, this method has limitations when applied to grain boundary diffusion.  Its
accuracy is diminished at grain boundary tri-junctions when using the very long time
steps that we desire as the concentration profile approaches its steady-state value.  Also, it
is unable to model grain boundaries that are realistically thin as compared to average
grain size.  This simulation method results in the creation of grain boundaries with an
effective width-to-grain-size ratio of at least 1/L, where L is the number of pixels along a
side of our Potts-model simulated microstructure.  Ratio values of about 2.5x10-3 for a
typical simulation fall well short of values of less than 1x10-4 for real materials.

The finite element (FE) method can be used to obtain solutions of both transient
and steady-state mass diffusion problems, and promises several advantages for accurately
modeling realistic grain structures.  Because it, unlike our ADI implementation of the
finite-difference method, is implicit in both dimensions simultaneously, it does not suffer
from long timestep limitations.  Also, the thickness of grain boundary elements can be a
parameter independent of the grid, so a single grid can be used to model several different
widths of grain boundaries.  In this work, the same grids were used for the FE method as
were used for the FD method, with each gridline between nodes defined as a 1-D element.
At this stage, the FE method is used to solve diffusion problems, to take advantage of its
greater flexibility in the future. Accessing the additional flexibility that the finite-element
method can provide, requires developing a meshing technique to describe a
microstructure free of the constraints of a uniform lattice and utilize a more advanced
finite-element code than our home-grown version.  Because the FE work is still in its
early stages, most of the simulation results presented are derived from FD simulations.

The finite-element method converges to a steady-state solution much more rapidly
than does our implementation of the finite-difference method on properly framed “finite-
difference” type problems.  This has less to do with the fact that one is FD and the other
is FE than the fact that one (FE) is fully implicit while the other (FD) is not.  This
suggests that to get optimal performance from the FD method for grain boundary
diffusion problems, it should be fully implicit, a point that we did not realize at the outset
of this work.

Grain Structure Diffusion Lattice

Boundary 
diffusivity

Bulk 
diffusivity

Figure 12. The method by which a bitmapped microstructure is mapped to a diffusion grid.
Note that diffusivities along grain boundaries correspond to the grain boundary coefficient,
diffusivities across grain boundaries correspond to the bulk coefficient.
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4.4. Validation

Our FD technique was validated by comparing to a number of analytic results.
Excellent agreement was found across all time regimes for diffusion from an infinite
source into a finite single crystal, from a semi-infinite source into a semi-infinite crystal,
from arrays of thick film solute sources, and others.20

In numerical simulations, the concentration gradient is represented by the
concentration at discrete points.  To determine if this discretization affects diffusion
results, comparisons were made to the analytic solutions for diffusion in a semi-infinite
single crystal with a finite thin film solute source.20  In the simulation, the solute source
was a single unit wide line having a different initial solute concentration than the rest of
the lattice.  As shown in Figure 13(a), the simulation shows excellent agreement with the
exact solution.

Another concern is stability and accuracy of the simulation when diffusivities
have discontinuities.  To examine this case, comparisons were made of simulation results
to the analytic solution for a semi-infinite slab solute source with diffusivity D1 bonded to
another semi-infinite slab with diffusivity D2.

20  As shown in Figure 13(b), the simulation
is in excellent agreement with the exact solution, even near the diffusivity discontinuity
located at x = 500.5.
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Figure 13. Comparison of finite difference calculation results (lines) to analytic results
(points) for (a) diffusion from a thin-film source at x = 200 and (b) diffusion in a heterogeneous
diffusion couple with an interface at x = 500.5.

In both these validation steps, the direction of diffusion was along the lines of the
direction of the lattice, and thus these tests are treated as 1-D diffusion problems by the
simulation procedure. However, our goal was to verify the accuracy of our simulation
procedure in 2-D, but 2-D transient diffusion problems are difficult to solve analytically.
To circumvent this limitation, the direction of diffusion was rotated with respect to the
lattice by a 45° so that the simulation procedure would not solve them as 1-D problems.
Figure 14 shows the results of such a test.  Diffusion from an infinite source into a finite
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open slab was simulated, and again excellent agreement was found with the exact
solution.
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Figure 14. Comparison of finite difference calculation results (lines) to analytic results
(points) for diffusion in a finite open slab in which direction of diffusion does not correspond with
lattice directions.

Grain boundary diffusion along multiple grain boundaries running through a finite
slab was simulated, as shown in Figure 15.  Transient concentration results were
compared to those published by Gilmer and Farrell.15  When using precisely the
parameters they reported, quantitative disagreement was found between the two models,
despite qualitative similarity.  However, good agreement could be obtained if the width
scale was doubled (i.e. grain boundary width and separation) in our films.  This
agreement is shown in Figure 16.  Thus, it appears that there may be a factor of two
discrepancy in the width scale definitions of the models.  Furthermore, Gilmer and Farrell
use a parameter that is the product of the grain boundary width and grain boundary
diffusion coefficient in the description of their system.  This single parameter is
insufficient to describe the combined effect of grain boundary thickness and grain
boundary diffusion coefficient when the transient concentration profile is desired,
therefore discrepancies in the results that diminish with time are attributed to this
ambiguity in their system description.
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Figure 15. Geometry of diffusion problem solved by Gilmer and Farrell.15
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Figure 16. Comparison of finite difference calculation results to semi-analytic results
reported by Gilmer and Farrell15 for the solution of diffusion into a finite slab of thickness Xo = 200
units thick with equally spaced grain boundaries normal to the surface and a ratio of boundary to
bulk diffusivity Db/Dg = 1000.  Gilmer and Farrell’s results use a boundary separation L = 200
units and a grain boundary width δ  = 1.  The finite difference results use L = 400 and δ = 2.
Dashed lines and open symbols correspond to the case of diffusion into a film with a diffusion
barrier on the back side.  Solid lines and closed symbols correspond to the case of diffusion into a
film with a high diffusivity surface on the back side.

4.5. Steady State Diffusion

The validated finite difference technique was utilized to study steady state
diffusive flux through polycrystalline microstructures.  Realistic two-dimensional grain
structures were generated by Monte Carlo Potts-models simulations for grain growth on
the square lattice with first and second neighbor interactions.21,22  Our goal in this case is
to compare the effective diffusion coefficient for a realistic microstructure to that for an
idealized system.

Consider a system with an infinite solute source at x = 0 in which all grain
boundaries are parallel to the x-axis.  As usual, the steady state flux of solute
J = Deff ∆c / ∆x , where  Deff  is the effective diffusivity for the medium.  To a first

approximation, the boundary and bulk contributions to the flux may be decoupled, so
Deff is given by a rule of mixtures relation

Deff =
D

b
δ

d
+

Dg
d

1−
δ
d

 
 
  

 
 

( 4-2)

where Dg  is the diffusion coefficient in the grain bulk, Db  is the grain boundary
coefficient, δ  is the grain boundary width, and d is the mean grain size (diameter).
Geometry shows that δ /d  is the approximate area fraction of grain boundaries.

If
Dbδ >> Dg , as in this study, then 

Deff ≈ Dbδ / d
, which is plotted as the upper line in

Figure 17.
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Figure 17. Effective diffusion coefficient Deff as a function of average grain size d for
simulated microstructures with Db = 10-1 and Dg = 10-6.  The rule of mixing coefficient
Deff = Dbδ / d  and the corrected rule of mixing coefficient Deff = 0.27Dbδ / d  are shown for
comparison.

Using the finite difference diffusion simulation, effective diffusivities from the
steady state flux through microstructures with varying average grain sizes were
computed.  These data are plotted as the symbols in Figure 17.  The measured effective
diffusivity varies inversely with grain size as predicted by the rule-of-mixing.  However,
Deff is smaller than the rule-of-mixing predicts at all grain sizes.

Three factors which combine to decrease Deff in the simulation microstructures
were determined.  These are boundary junction bottlenecks, indirect grain boundary
paths, and discrete lattice effects.

First, three-grain junctions or so called “triple” points are grain boundary diffusion
flux bottlenecks.  Consider, for example, a three-grain junction in which the two inlet
boundaries are carrying their full flux capacities.  The outlet boundary can carry only half
of the total possible inlet flux.  Likewise, in a junction with one inlet boundary at full
carrying capacity, both outlet boundaries receive only half of the inlet flux.  Monte Carlo
simulations which generate a random collection of both types of junctions and compute
the average flux carrying capacity of the boundaries show that for large numbers of
junctions, the flux carrying capacity seems to asymptote at 0.43 times the ideal capacity.

In addition, two geometric factors decrease boundary flux.  In an array of
polygonal grains, the boundaries form an indirect path across the sample.  For example, in
a hexagonal array of grains, the shortest point-to-point path is 2 / 3 = 1.15  times the
distance between endpoints.  For endpoints at the least favorable misorientation, the
shortest path is 4/3 = 1.33 times the endpoint separation.  We expect an average path to
be about 1.24 times longer than the sample width, which decreases flux to about 0.8 times
the ideal capacity.
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The final factor is purely a simulation artifact.  In the square lattice used here,
each boundary is represented as a zigzag of boundary segments parallel and perpendicular
to the x-axis of the simulation lattice.  Due to this discretization, in a system of randomly
oriented boundaries, the boundary path is a factor of 4 / π = 1.3 times longer than the
nominal point-to-point distance, and the flux is hence about π/8 = 0.78 times the ideal
capacity.

Combining these three flux decreasing factors, we can predict a corrected rule-of-

mixing diffusivity for realistic polycrystals.  Specifically, Deff = 0.27Dbδ / d , which is
plotted as the lower line in Figure 17.  The agreement between the corrected rule-of-
mixing diffusivity and the observed effective diffusivity is excellent.  In fact, the rule-of-
mixing diffusivity is very slightly lower than the observed diffusivity, because it ignores
bulk diffusion around the flux bottlenecks, which does occur in the simulations,
particularly at small grain sizes.  In addition, deviations from this scaling occur when the
grain size approaches the same order of magnitude as our finite lattice.

4.6. Transient Diffusion Profiles

The ability to closely observe transient diffusion is an advantage of our numerical
methods.  For example, Figure 18 shows solute concentration across a large-grain two-
dimensional polycrystal during transient diffusion.  The grain boundaries are clearly
delineated by solute concentration peaks, and concentration is relatively depleted near the
grain centers.

Levine and MacCallum have proposed a model for solute penetration into a
polycrystal.16  They coupled transverse diffusion into the sample via a given volume
fraction of high diffusivity boundary material with lateral bulk diffusion into an average-
shape grain.  Numerical analysis of their results predicts that the logarithm of the average

concentration at depth x should scale with x6/5 in certain time and penetration regimes.
This result has become the basis for experimental determination of grain boundary
diffusion coefficients.  Solute concentration is measured in serial sections of a
polycrystalline diffusion specimen and compared to the penetration curves of Levine and
MacCallum.16

Figure 18. Solute concentration profile in a two-dimensional microstructure.  An infinite source (C
= 1.0) is at x = 0, an infinite sink (C = 0.0) is at x = 100, and the boundaries y = 0 and y = 100 are
periodic.  The grain structure is shown on the base plane of the plot .
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Figure 19. Solute penetration into two-dimensional polycrystalline microstructures plotted
in the functional form suggested by Levine and MacCallum.16  Dg = 10-6, Db = 10-1, (a) d = 5, (b)
d = 10.

Solute penetration curves for finite difference diffusion through two-dimensional
grain structures are shown in Figure 19. Curves show a fairly linear dependence of

log<c> on x6/5 for small x, as predicted by Levine and MacCallum.  The curvature at
long times and large penetration depths is of the correct sign as well.  The slopes of the
linear regions of the curves are uniformly lower than the predicted slopes; that is, the
solute concentration at a given penetration is smaller than predicted.  There are two
reasons for this solute deficiency.  First, Levine and MacCallum combined all grain
boundaries into a single volume fraction of boundary material, so bottlenecks at three-
grain junctions and the path length effects discussed above are ignored.  As in the steady
state example, these effects will decrease the solute carrying capacity of boundaries in
real polycrystals.  Second, the stereological parameters used in the analysis of Levine and
MacCallum are three-dimensional.  The polycrystal in our study is strictly two-
dimensional.  Again, this decreases the solute carrying capacity of our boundaries.
Nonetheless, solute penetration in transient state diffusion agrees well with the functional
form given by analytical results.

4.7. Conclusions

Two numerical methods for solving grain boundary problems in realistic
microstructures have been implemented.  The first is a flexible finite difference technique
for solute diffusion in a bitmapped microstructure based on the Crank-Nicholson scheme
that uses the Alternating Direction Implicit (ADI) method to provide stability for long
timesteps.  This implementation uses a variable timestep to maintain a desired precision
for both short-time and long-time regimes of diffusion.  The second technique is a finite
element technique that promises greater flexibility in the modeling of grain boundary
diffusion, but is not fully implemented at this time.

The description of transient grain boundary diffusion cannot be parameterized
using the product of the grain boundary diffusion coefficient and the grain boundary
width.  To get realistic diffusion behavior, both realistic grain boundary widths and grain
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boundary coefficients and not just their product must be modeled.  Real microstructures
contain grain boundaries with thicknesses that are at most 10-3 of the average grain
diameter.  In our simulations, grain boundary thicknesses are at least 10-3 of the average
grain diameter.  This is a limitation for the FD method, since the narrowness of the grain
boundaries that we can simulate is limited by the resolution of lattice on which we
simulate diffusion, and modeling narrower grain boundaries would require using larger
simulation lattices.  The ability to model narrower grain boundaries without dramatically
increasing the size of the problem is an expected benefit of solving this problem using the
FE method.

Excellent quantitative agreement with analytic results for one-dimensional
diffusion problems, including the thin film solute source and semi-infinite slabs of
differing diffusivities was seen.

In simulations of steady-state grain boundary diffusion in two-dimensional
polycrystals, it was found that the effective diffusivity varies with the inverse of average
grain size, as predicted by a rule-of-mixing diffusivity.  Flux bottlenecks at three-grain
junctions and geometric factors which increase boundary path length decrease the
magnitude of the observed diffusivity to about 0.27 times the rule-of-mixtures prediction.

Transient state boundary diffusion agrees with the solute penetration analysis of
Levine and MacCallum.16  However, the magnitude of the concentration as a function of
penetration is again decreased due to junction bottlenecks and geometric factors.
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5. GRADIENT DEPENDENT POTTS-MODELING SIMULATIONS

The goal in this section is to investigate temperature dependent and temperature
gradient dependent grain growth phenomena via Potts-model simulation methods.  The
simulations required modifying the grain growth dynamics to include mobility effects and
to include additional terms in the Hamiltonian to account for biased migration along the
temperature gradients.

5.1. Background

In nuclear reactor fuel (especially uranium oxide) a number of grain morphologies
are observed across the radius of a fuel pellet. These morphologies and the physical
mechanisms responsible for them are discussed in Olander.23   Typically, near the center
of the fuel pellet, long columnar grains are observed.  In the middle portion of the pellet a
region of equiax grains are observed, and at the outer edge of the pellet the grain structure
resembles the as-fabricated grain structure and is called the unrestructured zone.

These types of grain morphologies are primarily caused by two effects: 1) by grain
boundary mobility dependence on temperature which varies substantially across an oxide
fuel pellet, and  2) by vaporization  and condensation mechanisms across grain
boundaries.  Oxide nuclear reactor fuels have very low thermal conductivities and as a
consequence very large temperature differences exist across the fuel pellet.  The
temperature profile may vary by over 1000 K over just a few mm.  The hotter fuel pellet
regions produce larger grains due primarily to increased mobility of the molecules.  In
addition columnar grain structures are produced in the hottest regions when there is a
temperature gradient because molecules vaporize from the hot side of a small void and
condense on the cold side.  This results in motion of voids or pores up the temperature
gradient.  As the pores move up the temperature gradient, columnar grains are left behind.

The goal of this section; therefore, is to simulate the growth of columnar grains
due to biased migration effects, and to vary the mobility of the grain boundaries to
produce substantial grain growth at hot portions of the simulation and little or no grain
growth in the coldest portions.

5.2. Mobility and Biased Migration

The Potts-model simulation method is described in an number of reports5,22 and in
section 2.  In this simulation we included mobility effects in the basic computational
model.  For clarity we have reproduced and summarized most of the zero temperature
Potts-model description in this section.
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 As usual the microstructure of a material is mapped onto a 2-dimensional grid or
lattice.  At each lattice site an index, Si, is assigned which corresponds to the orientation
of the grain at that site.  This index is called the spin.  Adjacent sites with different spin
orientations form  interface sites while sites with only like nearest neighbors are interior
sites.  The total system energy of the simulation over all sites is specified by assigning a
positive energy to interface sites and zero energy to interior sites.  It is computed via the
Hamiltonian

H J S S
j

z

i

N

i j= −
==

∑∑2 1
11

( ( , ))δ ( 5-1)

where the outer sum (i) is overall all sites in the system, and the inner sum (j) is only over
the z nearest neighbors.  The Kronecker delta function is defined as δ(Si,Sj) = 1 if Si = Sj,

and 0 otherwise.  Typically in these simulations S=100, thus allowing 100 different types
of grains.  J is a constant used to scale the grain boundary energy.  In essence the system
energy is J times the number of boundary segments in the system.

Grain growth kinetics are determined by Monte Carlo selection of the site and
then deciding whether or not to change the spin at this site based on the total system
energy change.  This is accomplished here by first randomly selecting a lattice site i, and a
new site spin Sj different from the original spin Si. The spin index of site i is then changed
to the new index (Sj) with probability given by

P E
if E

M if Ei
i

( )∆
∆
∆

=
>
≤









0 0

0
( 5-2)

where Mi is a scaling function dependent on the mobility of site i, and ∆E is the energy
change for assigning site I the new spin index Sj.   ∆E  is calculated by calculating the
difference in like-spin neighbors around site i when it has the old spin and the new spin.
When the number of nearest neighbors has more like spins with the new spin Sj, then ∆E
is negative, resulting in a lower value for the Potts-model Hamiltonian. ∆E is just the
change in the Hamiltonian due to change in spin of a single site i.

Note that the mobility function, 0 < Mi ≤ 1, scales the acceptance rate of the
energetically favorable changes.  Thus when the mobility function is high the likelihood
of changing the spin to one of the neighbors is high and thus the grains grow more
quickly when Mi is close to 1.  Similarly, the growth rate is slow when Mi is small.  Thus,
the magnitude of the simulation mobility function Mi is not equal to a physical mobility;
rather it represents a ratio of the physical mobility at fastest and slowest locations within
the simulation.
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5.2.1.   Grain Boundary Velocities

The velocity of the grain boundary (or lattice site) is defined as the product of the
mobility and the force on the system.

v M Fgb gb gb= ( 5-3)

Thus both the mobility of the grain boundary system and the driving forces must
be accurately modeled in the Potts-model simulations to accurately predict the grain
boundary morphology of the system.

For normal grain growth the force on the grain boundary causing grain growth is
proportional to the curvature of the grain

F rgb = 2σ ( 5-4)

where 2/r is the curvature of the grain and σ is the surface energy associated with the
interface.  Note that in the Potts-model simulation, the curvature of the grain is ∆E, and it
is calculated by summing the difference in like neighbors for the new and old spin values.

The mobility of the grain boundary is calculated by the Nernst-Einstein equation:

M
D

kTgb

gb= ( 5-5)

The grain boundary diffusion coefficient is just

D D egb o
Q kT= − /

( 5-6)

where Do is the prefactor for the diffusion coefficient, Q is the activation energy of
moving the grain boundary, k is the Boltzmann constant, and T is the temperature.

Because the simulation mobility function Mi is a ratio of physical mobilities it can
now be defined as:

M
T

T
ei

o Q kT kTo=
− −





1 1

( 5-7)

Note that when T=To ,  Mi  equals one,  and when T is small, Mi approaches zero.  Thus
the requirement that  0 < Mi ≤ 1  is satisfied.
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Figure 21:  Grain growth with spatially dependent mobility profile.  Observe the large equiax
grains on the high (hot) mobility side and the small equiax grains on the low (cold) mobility side.

Tests of the above mobility model were  performed by Holm24 assuming a linear
mobility curve with the value of 1 at the “hottest” portion of the simulation and a

0.1

1.0

Simulation
Mobility, Mi

Figure 20:  Simulation mobility profile used to bias grain
growth to large grains in the higher mobility regions.
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simulation mobility of 0.1 at the coldest portion.  Figure 20 illustrates this assumed
mobility function.

The results of the grain growth simulation with this mobility profile are illustrated
in Figure 21.  This figure shows that changing the mobility function does indeed change
the rate of growth of the grains.  The left side (hottest) or highest mobility portion shows
the largest grains, while the right hand side shows the least growth.

5.2.2.   Migration in a Temperature Gradient via Vapor-
transport

As described above, other driving forces or growth mechanisms can play
important roles in the development of grain morphology.  In materials at very high
temperatures and under the influence of a temperature gradient,  vapor-transport
mechanisms become another governing force capable of moving pores and grain
boundaries.  Thus, the equation for the velocity of the grain boundary must be generalized
to include vapor-transport terms as well as curvature.

{ }v M F Fgb gb curvature vapor= + ( 5-8)

The driving force for vaporization/condensation across grain boundary pores is
given by Olander(ref)

F N
H

T

dT

dxvapor p

vap

p

= 





∆
( 5-9)

where Np is the number of molecules displaced by the volume of the pores on the grain
boundary, ∆Hvap is the heat of vaporization of the molecules, T is the local temperature,
and dT/dx is the temperature gradient at the grain boundary.

Note, that in normal grain growth the driving force is curvature, and as a
consequence the Potts-model simulation used a Hamiltonian or energy change ∆E to
cause proper grain growth.  For the case of biased migration in a temperature gradient
(such as vapor-transport across  grain boundaries), it again makes sense to modify the
Hamiltonian to drive the columnar grain growth.  Rigorously, this should be performed
according to the driving term defined above in equation ( 2-1).

This was approximated in this study by simply introducing a temperature
dependent modification to the Hamiltonian and providing a scale factor to adjust the
relative strength of curvature driven grain growth to biased grain growth .

The gradient term was implemented by modifying local changes in the energy  ∆E

of a site by: adding 1 for like neighbors on the -x (hotter) side, or 2 2/  for like
neighbors in the diagonal.   Thus,
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∆ ∆ ∆E E Ecurvature dT dx= + / ( 5-10)

The equation and figure below illustrate this modification.

∆E C S S G jcurvature i j
j

z

= −∑ ( ( , )) * ( )1 δ ( 5-11)

G(j) is a multiplier to the like neighbor summation to bias the migration of like-spin-
neighbors to align with the temperature gradient.  C is a normalization constant, which in
this simulation was set to 1.0.

0.707 0 0

1.0 0 =G(j)

0.707 0 0

Figure 22:  Gradient term modifying the Hamiltonian

Figure 23:  Gradient dependent grain growth showing columnar grains at high mobility side,
equiaxed grains in the middle, and little grain growth on the cold or low mobility side.

High Mobility or
Hot Side

Low Mobility or
Cold Side
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With these modifications to the Hamiltonian the results of the biased grain growth
including a 10/1 mobility profile as before are shown in Figure 23.

As desired, the grain growth turned to columnar growth at the hottest side, equiax
in the middle, and exhibited little growth at the cold site.  This simulation is found to
replicated quite well the expected growth behavior observed in nuclear fuels.

However, as mentioned above, the true mechanism is vapor-transport across pores
trapped on the grain boundary, which results in pores moving up the temperature
gradient.  We have experimented with moving pores to simulate more realistically true
physics of the columnar growth phenomenon.  It was found that the pores would move
readily to the grain boundaries, and preferentially to the corners of the grains.  However,
moving across grains required extremely large gradient terms.  It was felt that the pore
movement in question could only be modeled using a Potts-model with a finite
temperature , rather than the zero-temperature version used here.  It is also believed that a
more rigorous use of the real driving functions should be included to assure proper
balancing of curvature, temperature gradient and other terms in the modeling.

5.3. Biased migration using the N-Fold Algorithm

The gradient or biased migration  term can also be used with the zero-temperature
N-fold algorithm.  The N-fold algorithm works by setting up lists of sites that have
neighboring spins that allow the target site to be flipped to match its neighbor.   In other
words, sites are excluded that cannot change  (i.e. those where the target site already
matches all of its neighbors). The energy of the site is determined, as in the conventional
Potts  algorithm, by the number of same-spin neighbors, as is the energy of the new (trial)
spin.  Basically this technique works because the list of sites selected for spin flip changes
depends only on the Hamiltonian.  Therefore, because biased migration only changes the
Hamiltonian a new or augmented list can be set up by  using the gradient-dependent
algorithm described in the previous section.  This new list can then be used in the N-fold
method, resulting in the gradient-dependent variation in grain growth as seen with the
conventional Potts algorithm.  The biased migration N-fold algorithm was implemented,
and in fact was used to create Figure 23.

5.4. Conclusion of Biased Migration Potts-model
Simulations

To investigate the columnar grain growth seen in reactor fuel, a gradient-
dependent term was added to the Potts-model Hamiltonian;  this represents an additional
energy term caused by the presence of a thermal gradient.  This approach was taken
because it fit easily into the mobility model which indicates that the velocity of the grain
boundary is proportional to its mobility times the driving terms.  Under normal grain
growth, the dominant driving term is curvature, which is included in the standard Potts-
model Hamiltonian.  An additional driving term was included to account for the gradient-
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dependent vapor-transport.  Clearly, other physical transport mechanisms can also be
included (surface diffusion, volume diffusion, and migration of pores in stress gradients).

The Potts-model Hamiltonian was implemented by summing the number of like-
spin neighbors around a site with the old spin and the new spin.  If the difference was
positive (negative energy change), then the flip to the new spin was made.  Tests were
conducted on a problem with a linear mobility gradient in the x direction, hottest at x=0.
This normally resulted in the fastest growth and larger grains at the hot side, becoming
smaller toward the cool side.  The grains were all equiax, however.

The gradient term in the Hamiltonian was implemented simply by adding a 1 to

the energy sum for like neighbors on the -x (hotter) side, or 2 2/  for the like neighbors
in the diagonal (hot side) direction.  When this Hamiltonian was used with the one-
dimensional linear mobility gradient, the grain growth turned to columnar growth at the
hottest side, equiax in the middle, and showed little growth at the low mobility (cold)
side.

We also implemented an N-fold algorithm version of the biased migration
simulation, which produced the same results as classical solution method.

The type of grain growth in uranium oxide fuel, although extremely similar in
appearance to the results of the gradient Hamiltonian, is actually caused by a temperature
and temperature gradient-dependent vapor transport mechanism across pores in the fuel.
The pores grow and move up the temperature gradient, leaving a columnar structure
behind them.

In experimenting with moving pores, it was found that the pores would move
readily to the grain boundaries, and preferentially to the corners of the grains.  However,
moving across grains required extremely large gradient terms.  It was felt that the pore
movement in question could only be modeled using a Potts-model which included more
realistic matching of various driving forces and with a finite temperature Potts-model.
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